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Abstract: In this paper an Optimal Fuzzy Guidance (OFG) law for surface to air missile against maneuvering Targets is introduced. Proportional 
Navigation Guidance (PNG) law is used to establish the rules of the introduced approach. The OFG attempts to keep miss-distance and control 
effort as minimum as possible. Based on Time Variant Particle Swarm Optimization (TVPSO), the Membership Functions (MFs) of the proposed 
design are optimized. To show the relative superiority of the approach, the performance of the new guidance law has been compared with that of 
PNG. The results confirm the validity of the introduced design and show that OFG performs better than PNG on variety of scenarios; some of 
which are discussed in the paper. 

 
      Index Terms: Fuzzy Logic Controller, Particle Swarm Optimization, Proportional Navigation Guidance 

------------------------------------     ------------------------------------ 
 
1. INTRODUCTION 

UIDANCE laws are mainly based on classical control 
techniques such as, sliding mode control [1], adaptive 

control [2], and linear quadratic based control [3].  The so 
called “conventional” control approaches, although efficient 
in most cases, might not be effective for tracking and 
interception of maneuvering targets. Fuzzy logic controllers 
(FLCs) have suitable properties that help diminish such 
difficulties. Most fuzzy guidance laws are, in fact, the fuzzy-
logic implementation of existing well-known classical 
guidance laws; such as PNG, that is because of its simplicity, 
effectiveness and ease of implementation [4]. FLCs are 
developed to utilize human expert knowledge in controlling 
various systems. It is well known that while fuzzy rules are 
relatively easy to derive from human experts, the fuzzy MFs 
are difficult to adjust. Tuning of MFs is a time consuming and 
often frustrating exercise. To overcome these difficulties 
various techniques have been reported to automate the tuning 
process of MFs. An adaptive network based fuzzy inference 
system was introduced [5] and a quantum neural fuzzy 
network was used to learn the data space of a Tagaki-Sugeno 
fuzzy controller [6]. In addition; Genetic algorithm has been 

used in the automatic design of fuzzy controllers in the areas 
of mobile robotics [7]. In the last decades, Particle Swarm 
Optimization (PSO) is verified to consider a good technique 
for tuning because of its simplicity, ease of implementation, 

and its ability to tackle tough cost functions with many local 
minima [8]. PSO is a population based stochastic optimization 
technique developed by Clerc and Kennedy [9]. Particle 
swarm algorithm imitates human (or insects) social behavior. 
Individuals interact with one another while learning from 
their own experience, and gradually the population members 
move into better regions of the problem space. The swarm of 
PSO can be envisioned as multiple birds (particles) that search 
for the best food source (optimum) by using their inertia, their 
knowledge, and the knowledge of the swarm. Single particles 
behave similarly because they share the same configuration. 
While searching for food, the birds are either scattered or go 
together before they locate the place where they can find the 
food. While the birds are searching for food from one place to 
another, there is always a bird that can smell the food very 
well, that is, the bird is perceptible of the place where the food 
can be found, having the better food resource information. 
Because they are transmitting the information, the birds will 
eventually flock to the place where food can be found. 
     Time Variant Particle Swarm Optimization TVPSO [10] is 
used in this paper to optimize the MFs of the proposed 
design. Through the optimization process, an objective 
function which includes the terms; miss distance 𝑀𝐷, and 
control effort 𝐶𝐸𝐹𝐹 is minimized. 
     The work is organized as follows: in Section 2 a 
construction of the proposed Fuzzy Logic Controller is 
introduced. Then PSO and TVPSO are explained in Section 3. 
The MFs are optimized in section 4, whereas the results are 
provided in Section 5. Conclusion is included in section 6. 
 
 
2. CONSTRUCTION OF THE PROPOSED FLC: 
Fig. 1 illustrates the construction of the FLC which is 
composed of five functional blocks.  
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The rule base contains a number of if-then rules, a database 
that defines the MFs, a decision making interface which 
operates the given rules, a fuzzification interface that converts 
the crisp inputs into “degree of match” with the linguistic 
values like small or large etc., and a defuzzification interface 
which reconverts to a crisp output. 
 

 
 

Fig. 1: The structure of FLC. 
 

Minimum Mamdani (AND) method, the most popular 
inference engine, is used to obtain the best possible 
conclusion, this type of inference engine allows easy and 
effective computation and it is appropriate for the real time 
control application [11]. Furthermore, the Center of Aria 
(CoA) method, which supplies defuzzified output with better 
continuity and affectivity [12], is chosen for defuzzification. 
To establish the rules of the proposed OFG, the conception of 
PNG law is used, in which the acceleration command 𝐴𝐶 is 
mathematically expressed as 
 

 𝐴𝐶 = 𝑁.𝑉𝐶 . �̇�                                                                                (1) 
 
Where; 𝑁 is the navigation ratio, 𝑉𝐶 is the closing velocity 
and �̇� is the (LOS) angle rate. Similarly to PNG controller the 
OFG controller uses 𝑉𝐶, �̇� as inputs, and 𝐴𝐶 as output. The 
inputs and the output are quantized and normalized within [-
1, 1]. The (input/output) data are normalized according to 
max method normalization [13]. This method divides the 
performance ratings of each attribute by its maximum 
performance rating. In the current design the maximum 
values are obtained based on the knowledge available about 
missiles dynamic in addition to previous experiences about 
other classical guidance laws in the PNG’s class. The 
maximum values are shown in Table 1: 
 

Table 1: Maximum values for normalization. 

 
 

2.1. Number and shape of the MFs: 
In this work; three groups of MFs with triangular shape are 
investigated for the controller. Each variable 𝑉𝐶, �̇� and 𝐴𝐶 has 
its own group. In turn, each group has seven MFs, and each 
MF is described by a linguistic value. The linguistic values can 
be represented as :{ LN, MN, SN, ZE, SP, MP, LP}, where “L”, 
“M”, and “S” represent “Large”, “Medium”, and “Small” 
respectively. Similarly; “N”, “ZE”, and “P” denote 
“Negative”, “Zero”, and “Positive” respectively. 

Each triangular MF is determined by three parameters such 
as, (a, b and c). The parameter (a) locates the left foot of the 
MF whiles (c) locates the right foot, and (b) locates the peak as 
plotted in Fig. 2.  
 

 
 

Fig. 2: A typical set of MFs. 
 
The triangular MF has a form declared as: 
 

𝑓(𝑥, a, b, c) =

⎩
⎪
⎨

⎪
⎧

0, 𝑥 ≤ a
𝑥−a
b−a

a ≤ 𝑥 ≤ b
    

c−𝑥
c−b

b ≤ 𝑥 ≤ c
0, c ≤ 𝑥 ⎭

⎪
⎬

⎪
⎫

                                  (2) 

 
The parameters (a, b and c) have to satisfy ( a < b < 𝑐). This 
condition has to be considered throughout the optimizing 
process. 

2.2. Searching for proper rules: 
Based on the concept of PNG law; 𝐴𝐶  is proportional to 
multiplication of the two variables �̇� and 𝑉𝐶. So that; it is 
trivial that the sign of 𝐴𝐶 will be negative “N” if one of (�̇� 
or 𝑉𝐶)’s signs were negative, otherwise it will be positive “P”, 
therefore; the sign of 𝐴𝐶  could simply define as following: 
 

Table 2: Defining the sign of 𝐴𝐶. 

 
 

The data are normalized within the interval [-1, 1] before 
feeding to the input of the controller. 
It is trivial that; a multiplication of two values (𝑣𝑎𝑙1,𝑣𝑎𝑙2) in 
the interval [-1, 1] results a value (𝑣𝑎𝑙) that is smaller than the 
smallest of them. In addition, (𝑣𝑎𝑙) will be Zero “ZE” if any of 
them were Zero. Adopting this concept the linguistic values of 
𝐴𝐶 can be defined as described in Table 3: 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013                                                                    1166 
ISSN 2229-5518 

IJSER © 2013 
http://www.ijser.org  

Table 3: Defining the values of 𝑨𝑪. 

 
 
Taken into account the two previous conceptions, (Table 2, 
Table 3), the entire rules can be obtained as follows: 
 

Table 4: Rules of the OFG. 

 
 

3. PSO AND TVPSO: 
The PSO is a population based stochastic optimization 
technique consists of a swarm of particles flying through the 
search space. Every individual in the swarm contains 
parameters for position and velocity. The position of each 
particle represents a potential solution to the optimisation 
problem. The dynamic of the swarm is governed by a set of 
rules that modify the velocity of each particle according to the 
experience of the particle itself and that of its neighbors 
depending on the social network structure within the swarm. 
By adding a velocity to the current position, the position of 
each particle is modified. 
     As the particles move around the space, different fitness 
values are given to the particles at different locations 
according to how the current positions of particles satisfy the 
objective. In a single iteration, each particle tracks its personal 
best position. Depending on the social network structure of 
the swarm, the global best position, and/or the local best 
position, is used to influence the swarm dynamic. After a 
number of iterations, the particles will eventually cluster 
around the area where fittest solutions are. 
     The swarm behavior is influenced by; the number of 
particles (N), the neighbourhood population (P), the inertia 
weight (𝑤), the maximum velocity (𝑣𝑚𝑎𝑥), and the acceleration 
calculation (𝑐. 𝑟) that modifies the velocity. The larger the 

number of particles in the swarm, the more likely the swarm 
will converge on the global optimum, because the social 
information exchange is increased. The influence of the 
current velocity on the new velocity can be controlled by the 
inertia weight. A large inertia weight compels large 
exploration through the search space; a smaller inertia weight 
causes reduced exploration. The influence of the particle’s 
experience and that of its neighbor is governed by the 
acceleration calculation. 
     The further away the particle is from the best position from 
its own experience and its neighbor, the larger a change in 
velocity that is made in order to return to that best position. 
The acceleration limits the trajectory of the particle oscillation. 
The smaller the acceleration, the smoother the trajectory of the 
particle is. However, too small an acceleration may lead to 
slow convergence, whereas too large an acceleration drives 
the particles towards infinity. The new velocity is limited by 
the given maximum velocity to prevent particles from moving 
too fast in the space. 
     In particular, the velocity associated with each particle in 
PSO is calculated as the following [14]: 
 
𝑣𝑖(𝑘+ 1) = 𝑤𝑣𝑖(𝑘) + 𝑐1. 𝑟1(𝑘)�𝑥𝑔 − 𝑥𝑖(𝑘)� 

                                       + 𝑐2. 𝑟2(𝑘) �𝑥𝑖
𝑝 − 𝑥𝑖(𝑘)�                      (3) 

 
Where; 𝑤 is the inertia weight of the particle,  𝑣𝑖(𝑘) is the 
velocity of the particle 𝑖 at time step 𝑘, and 𝑥𝑔 is the global best 
performing particle up to time step 𝑘 in the entire 
population. 𝑥𝑖

𝑝 is the best experience particle 𝑖 has had up to 
time step 𝑘, and 𝑥𝑖(𝑘) is the current location of particle 𝑖, 
and 𝑐1, 𝑐2 are the acceleration coefficients. 𝑟1, 𝑟2 are random 
numbers within [0, 1] those represent random fiction. To limit 
the searching space 𝑣𝑖(𝑘) is limited to be within a certain 
range of 𝑣𝑖𝑚𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑖𝑚𝑎𝑥 . The new location of particle 𝑖 can 
be calculated as: 
𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘+ 1)                                              (4) 
 
The evaluation of the particle performance is based on a 
problem specific objective function that decides the 
“closeness” of the particle to the optimal solution. 
      In the TVPSO; the vital parameters; inertia weight 𝑤 and 
acceleration coefficients 𝑐1 and 𝑐2, are allowed to change with 
the iterations, making it capable of effectively handling 
optimization problems of different characteristics. 
o The parameter 𝑤 controls the influence of the previous 

velocity on the present velocity. 
Here, adaptation of 𝑤 is introduced in TVPSO namely 𝑤𝑡. 
The value of 𝑤𝑡 is allowed to decrease linearly with iteration 
from 𝑤1 to 𝑤2. The value of inertia weight 𝑤𝑡 at iteration 𝑖, is 
obtained as: 
 
𝑤𝑡 = (𝑤1 −𝑤2) 𝐼−𝑖

𝑖
+𝑤2                                                    (5) 
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Where; 𝐼 is the maximum number of iterations and 𝑖 is the 
iteration number. 

o The other two important parameters are 𝑐1 and 𝑐2, where 𝑐1, 
is called the cognitive acceleration coefficient and 𝑐2 the 
social acceleration coefficient. To incorporate better 
compromise between the exploration and exploitation of the 
search space in the swarm, 𝑐1 has been allowed to decrease 
from its initial value of 𝑐1𝑖 to 𝑐1𝑓 while 𝑐2 has been increased 
from 𝑐2𝑖 to 𝑐2𝑓. Here, the parameters 𝑐1, 𝑐2 are replaced 
by 𝑐1𝑡 , 𝑐2𝑡 respectively and calculated as follows: 
 
𝑐1𝑡 = �𝑐1𝑖 − 𝑐1𝑓�

𝑖
𝐼

+ 𝑐1𝑖                                                       (6) 
 
𝑐2𝑡 = �𝑐2𝑖 − 𝑐2𝑓�

𝑖
𝐼

+ 𝑐2𝑖                                                      (7) 
 

As it shown, the values of the acceleration coefficients and the 
inertia weight are always updated through the iterations. The 
flowchart of the TVPSO process can be shown in Fig. 3.  
 

 
Fig. 3: Flowchart of TVPSO to adjust the MFs. 

 
Throughout the optimization process, TVPSO updates the 
velocity vector for each particle then adds that velocity to the 
position of the particle. Velocity updating is influenced by 
both the best global solution, associated with the lowest cost 
(objective function) ever found by a particle, and the best local 
solution, associated with the lowest cost in the present 
population. 
     If the best local solution has a cost less than the cost of the 
current global solution, then the best local solution is replaced 
by the best global solution. The algorithm continues updating 
the velocities and adds them to the corresponding positions 
until a termination criterion, such as a limit on the number of 
iterations or satisfactory results, is reached, thereupon the 
process will stop. 

4. MFs OPTIMIZATION: 
In the current work, we have 14 MFs in the inputs and 7 MFs 
in the output. Each of the MFs has its own three parameters, 
as a result, there is a number of 63 parameters have to be 
optimized. The population is set to be 𝑃 = 100 and the total 
searching iteration is set to be 𝐼 = 500. The following factors 
are used through the optimization, 𝑤1 = 0.7,𝑤2 = 0.4, 𝑐1𝑖 =
2.5, 𝑐1𝑓 = 0.5, 𝑐2𝑖 = 0.5, 𝑐1𝑓 = 2.5, while 𝑟1, 𝑟2 are randomized 
within [0, 1]. 
The object function is defined as: 
 
𝐹�𝑧(𝑘)� = 𝑘1.𝑅𝑇𝑀�𝑇𝑓�+ 𝑘2.∫ 𝐴𝐶2𝑑𝑡

𝑇𝑓
0                                    (8) 

 
Where; 𝑧(𝑘) is a vector denotes the parameters of the MFs 
need to be optimized, 𝑘1,𝑘2 are designed constants refer to 
preference of the terms, 𝑀𝐷 and 𝐶𝐸𝐹𝐹 respectively. 
     The changing of the object function value throughout the 
search of the optimal solution is plotted in Fig. 4. It can be 
seen that the searching can be terminated after about 320 
iterations, when there is no reduction in total value of object 
function was observed.  
 

 
Fig. 4: Object function Reduction by TVPSO process. 

 
As soon as the process is finished, the optimized parameters 
can be extracted. Fig. 5 shows the optimized MFs of the inputs 
and the output ��. 
 

 
(a) 
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(b) 

 

 
(c) 

 
Fig. 5: Optimized MFs of; a) Line of Sight Angle Rate, b) Closing Velocity, 

c) Acceleration Command. 

5. RESULT AND ANALYSIS: 
To examine the resulted guidance law, performance of OFG 
law is compared with PNG law. For that, engagement 
geometry of missile-target is considered with the following 
assumptions: 
o Respect to the missile: initial position (0, 0) km, velocity 

1000 m/sec, the missile can accelerate within [-200, +200] g.  
o Respect to the target: initial position (15, 3) km, velocity 300 

m/sec, the missile can accelerate within [-3.5, 5] g. 
o Where g =9.8 m.sec-2, is the gravity constant. The navigation 

ratio of PNG is N=4. 
One of the important factors in the simulation process is 
usually the integration time-step. This is normally chosen 
based on nature of the problem or experience. Here, we use a 
time step equal to 0.01 second, mainly because a typical 
missile-gyro gyrates around 100 cycles per second. Fig. 6 
illustrates a simple guidance loop. 

 
 

Fig. 6: Simple Guidance Loop. 
 
Engagement accuracy of PNG and OFG for 19 different 
scenarios, respect to the target accelerations, is fully examined. 
The examined scenarios are chosen respect to the following 
target acceleration values (-3.5,-3, -2.5 … 4.5, 5) g. Root Mean 
Square values (RMS) of the terms ��, 𝑀𝐷 and 𝐶𝐸𝐹𝐹 for all 
scenarios are calculated and tabulated as follows: 

 
Table 5: RMS values for the all scenarios. 

 
 
The tabulated results declare that OFG law overweighs PNG 
law and shows decrements of (16% and 22%) with regard to 
the terms;  𝑀𝐷 and 𝐶𝐸𝐹𝐹 respectively. 
     Fig. 7 shows the trajectories for the first scenario (target 
accelerations is -3.5g), where Fig. 8 shows the missile 
acceleration commands for the corresponding scenario. 
 

 
Fig. 7: Trajectories for OFG and PNG. 

 

 
Fig. 8: Acceleration Commands for OFG and PNG. 

6. CONCLUSION: 
In the current work, an OFG law for surface to air missile 
against maneuvering Targets is introduced. Rules of the OFG 
law are established based on the conception of the classical 
PNG law. MFs of the proposed design are optimized using 
TVPSO algorithm. The optimization is achieved under the 
consideration of minimizing an object function which includes 
the terms; miss distance, and control effort. Many different 
scenarios are studied with regard to different values of terms; 
target’s accelerations. Root Mean Square values of the miss 
distance and control effort are calculated. The results showed 
that OFG performs better than classical PNG. Nevertheless, 
further investigation might be required to examine the effect 
of noise and uncertainties in both missile and target dynamics. 
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